Understanding API casing grades: An Overview
API Casing Grades – An Overview When it comes to the Oil and gas industry, the quality and durability of casing Pipes are of utmost importance. These pipes, known as API casing, play a crucial role in the drilling and extraction process. To ensure that the casing pipes meet the required standards, the American petroleum Institute (API) has established a set of grading systems. In this article, we will provide an overview of API casing grades and their significance in the industry. API casing grades are a classification system that categorizes casing pipes based on their mechanical properties and chemical composition. These grades help in determining the suitability of the casing pipes for specific drilling conditions and environments. The API casing grades range from H-40 to Q-125, with each grade having its own unique characteristics. The first grade, H-40, is the lowest grade in the API casing classification. It has a minimum yield strength of 40,000 pounds per square inch (psi). This grade is suitable for shallow wells with low pressure and low strength requirements. On the other end of the spectrum, we have the Q-125 grade, which has a minimum yield strength of 125,000 psi. This grade is designed for high-pressure and high-strength applications, such as deep offshore drilling. In between these two extremes, there are several other grades that cater to different drilling conditions. For example, the J-55 grade has a minimum yield strength of 55,000 psi and is commonly used in shallow to medium-depth wells. The K-55 grade, which has the same yield strength as J-55, is often used in wells that require higher resistance to corrosion.
Chemical Composition, Mass Fraction (%) | ||||||||||||||
Grade | C | Mn | Mo | Cr | Ni | Cu | P | S | Si | |||||
Type | min | max | min | max | min | max | min | max | max | max | max | max | max | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
H40 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
J55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
K55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
N80 | 1 | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
N80 | Q | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
R95 | — | — | 0.45 c | — | 1.9 | — | — | — | — | — | — | 0.03 | 0.03 | 0.45 |
L80 | 1 | — | 0.43 a | — | 1.9 | — | — | — | — | 0.25 | 0.35 | 0.03 | 0.03 | 0.45 |
L80 | 9Cr | — | 0.15 | 0.3 | 0.6 | 0.9 | 1.1 | 8 | 10 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
L80 | 13Cr | 0.15 | 0.22 | 0.25 | 1 | — | — | 12 | 14 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
C90 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
T95 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
C110 | — | — | 0.35 | — | 1.2 | 0.25 | 1 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
P110 | e | — | — | — | — | — | — | — | — | — | — | 0.030 e | 0.030 e | — |
Q125 | 1 | — | 0.35 | 1.35 | — | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.01 | — | |
NOTE Elements shown shall be reported in product analysis. | ||||||||||||||
a The carbon content for L80 may be increased up to 0.50 % maximum if the product is oil-quenched or polymer-quenched. | ||||||||||||||
b The molybdenum content for Grade C90 Type 1 has no minimum tolerance if the Wall thickness is less than 17.78 mm. | ||||||||||||||
c The carbon content for R95 may be increased up to 0.55 % maximum if the product is oil-quenched. | ||||||||||||||
d The molybdenum content for T95 Type 1 may be decreased to 0.15 % minimum if the wall thickness is less than 17.78 mm. | ||||||||||||||
e For EW Grade P110, the phosphorus content shall be 0.020 % maximum and the sulfur content 0.010 % maximum. |